FPI Mag is a registered trademark of McCrometer, Inc.

Copyright © 1997-2017 McCrometer Inc. All printed material should not be changed or altered without permission of McCrometer. All published technical data and instructions are subject to change without notice. Contact your McCrometer representative for current technical data and instructions. FPI-Mag® is a registered trademark of McCrometer Inc.

STEP 1: CONVERTER TERMINAL BOARD CONNECTIONS

Not Applicable to HART or Profibus Options - For HART or Profibus Configurations, see Converter KIT (Lot# 30120-46)

All electrical cables enter the converter through compression fittings located on the side of the converter. Ensure that all compression glands are properly tightened and all unused fittings are plugged so the case remains sealed.

All connections are made on the terminal board. To access the terminal board, loosen the four screws on the front of the converter and lift the converter open.

STEP 2: SENSOR GROUNDING

FPI Mag meter is electrically continuous to a conductive (non-PVC) pipe through the retaining rods. Additional grounding may be required to a dedicated earth ground via ring terminal and 10 AWG wire (not provided).

VFD’s and chemical injection mechanisms may have adverse effects on the electromagnetic signal. Contact the factory for further information on grounding effects.

CONTENTS

1 - FPI Mag Sensor
2 - Long threaded retaining rods
2 - Short threaded retaining rods
1 - Converter
1 - Calibration Certificate
1 - FPI Mag Installation, Operation and Maintenance Manual
1 - Converter Installation, Operation and Maintenance Manual

TOOLS

Tools Provided:
- Two - 9/16” or 3/4” reversible ratchet wrenches
- 1 - Pipe thread sealant
- 8 - Hex nuts (3/8” or 1/2”)
- 4 - Locking cotter pins
- 2 - Sensor and power cables with Quick-Connect
- 1 - Brass ball valve & SS nipple
- 2 - Protective caps for retaining rods

Tools recommended for installation:
- One - Pipe wrench capable of a 4” span
- One - 7/16” wrench or crescent wrench
- One - Sensor Insertion Tool (3/8” or 1/2”)

WARNING! Incorrect installation or removal of FPI Mag meters can result in serious injury or death. Read the instructions and the safety warnings in the supplied manual carefully before installation. This guide is not intended as a substitute for reading the manual.

CONTACT INFORMATION

3255 WEST STETSON AVENUE • HEMET, CALIFORNIA 92545 USA

INSTALLATION STEPS

Verify the system serial numbers on both the sensor and converter to ensure a properly calibrated system.

The Meter Serial Number is located on the side of the sensor body on a silver label.

The tag on the side of the converter has the converter model number, the converter serial number and the meter serial number.

STEP 2: DETACH THE CABLE QUICK CONNECTS

The meter cables are fitted with IP68 rated Quick-Connect fittings at the sensor and converter connection. Detach the cable prior to sensor installation.

IMPORTANT: When the cables are not attached to the sensor, connect the end caps to the sensor and cable connections to keep them free of dirt and corrosion. When the cables are attached to the sensor, connect the end caps together.
STEP 3: SENSOR INSTALLATION LOCATION

This Quick Start Guide is designed to provide installation instructions when the location of the sensor installation has been predetermined. If not, see the FPI Mag Installation, Operation and Maintenance manual (Lit. No. 30124-41), Section 2.0 Installation, STEP 3 - Verify Sensor Installation Location - Upstream And Downstream Straight Pipe Runs.

STEP 4: SENSOR CLEARANCE

The sensor will protrude from the pipe during installation and when installed requiring sufficient clearance from any obstruction.

STEP 5: PIPE VALVE INSTALLATION

WARNING! Pressurized pipes should only be hot tapped, cut, or drilled by qualified personnel using high quality saddles, valves and stainless steel nipples. If possible, depressurize the pipe before attempting any installation.

The sensor comes standard with a 2" brass BSP threaded ball valve and a 2" stainless steel nipple. The 2" stainless steel nipple is to be used if the installation site has a female fitting, i.e., a welded coupling. If the installation site has a male fitting, i.e. a 2" nipple, then the supplied 2" stainless steel nipple is not required for the sensor installation.

Use pipe sealant or Teflon thread tape when installing the valve onto the pipe.

STEP 6: OPTIONAL COMPRESSION SEAL DISASSEMBLY FOR INSTALLATION

The sensor assembly can be installed onto the pipe valve as a whole unit. On larger pipe size installations this can be cumbersome or impractical. In such cases, the compression seal assembly can be removed from the sensor for easier installation onto the pipe valve. Once the compression seal assembly is installed onto the pipe valve, then the sensor can be re-installed into the compression seal assembly.

NOTE: If this step is skipped, proceed to STEP 8.

1. Loosen, but do not remove, the bolts and nuts on the compression seal relieving the pressure on the compression seal assembly.
2. On the compression seal assembly, remove the locking cotter pins from the bottom of the two retaining rods under the 3/8" or 1/2" nuts.
3. Remove the 3/8" or 1/2" nuts from the retaining rods.
4. Slide the sensor out of the compression seal. The retaining rods will also slide out of the compression seal assembly. Carefully set the sensor and attached hardware to the side. At this point the compression seal assembly can be installed onto the valve.

STEP 7: SENSOR INSTALLATION ONTO PIPE VALVE

The sensor assembly uses a compression seal, which keeps the sensor watertight when the pipe is under pressure. Care must be taken when installing the sensor to avoid leaks.

1. Visually inspect all elements of the installation to ensure they are structurally sound and of high quality materials, including all welds, couplings and nipples.
2. Put a generous amount of the supplied pipe sealant on the compression seal threads. Teflon tape may also be used. **NOTE:** If pipe sealant gets on the sensor electrodes the velocity signal may be lost.
3. Place the compression seal screws over the valve threads. Turn the entire sensor assembly clockwise to secure the assembly to the valve.

STEP 8: INSTALLING THE SHORT RETAINING RODS

After the sensor has been inserted and the load adjusted, shorter retaining rods can be installed and the longer ones removed. This will make the sensor more compact.

1. Insert the two short retaining rods through the two holes in the top plate opposite the two captive nuts with the long retaining rods. Once the short retaining rods are passed through the top plate, thread one nut per rod onto the bottom of the rod about one inch.
2. Insert the two short rod ends through the corresponding holes on the compression seal bottom plate. Thread a nut onto the bottom of each short retaining rod.
3. Tighten the nuts above and below the compression seal bottom plate to secure the short retaining rods to the bottom plate.
4. Attach the locking cotter pins to each end of the short retaining rods. They are required for the removal of the sensor. It is important to safely store the long retaining rods and label them with the meter serial number.

NOTE: Use this step if you removed the compression seal assembly (STEP 6) and installed nuts onto the pipe valve separate from the sensor. If you installed the sensor without disassembling it, proceed to the next step.

1. Apply water to the interior surface of the seal gland. Ensure the end has a hole in it.
2. On the compression seal assembly, remove the locking cotter pins from the bottom of the two retaining rods completely installed with the 3/8" or 1/2" nuts properly tightened.
3. Remove the 3/8" or 1/2" nuts from the retaining rods.
4. Slide the sensor out of the compression seal. The retaining rods will also slide out of the compression seal assembly. Carefully set the sensor and attached hardware to the side. At this point the compression seal assembly can be re-installed onto the valve.

STEP 9: RE-ASSEMBLY AFTER OPTIONAL COMPRESSION SEAL ASSEMBLY INSTALLATION

The sensor can be assembled while the line is under flowing conditions. The line water velocity should be as low as possible to prevent sensor vibration during the insertion process. The velocity must be under 1.5 m/s (5 ft/s).

WARNING! The compression seal/sensor assembly may be under pressure. Serious injury may result if proper procedures are not followed. Do not attempt to install the sensor without the retaining rods fully assembled.

If the meter was disassembled to assist in the installation of the compression seal assembly on to the valve it is important to ensure that the meter is properly reassembled with both retaining rods completely installed with the 3/8" or 1/2" nuts properly tightened.

Ensure the two compression seal bolts are hand tightened.

IMPORTANT: When inserting the retaining rods, ensure the end has a hole for the locking cotter pin.

Barely crack open the valve and tighten compression seal bolts as required to seat against the far wall of the pipe. The amount of load is indicated by the three lines and set screw at the top of the sensor. The bottom line indicates a 300 lb. load.

Recommended sensor loads are 300 lbs. or less for low pressure plastic pipes and 450 lbs. for low pressure metal pipes.

For applications other than low pressure the sensor load should be increased. Follow the instructions below after the set screw is between the top and middle lines. Consult factory for the appropriate loading for your application.

Rotate the two captive nuts on the top plate until the proper load is indicated. If using the Insertion Tool, rotate the two captive nuts using only the low pressure metal pipes. DO NOT use the high gears on the insertion tool as this may create too much load too fast and damage the sensor or the pipe.

NOTE: If the short retaining rods are not used, run a 3/8" or 1/2" nut down against each captive nut to prevent the captive nut from rotating.

STEP 10: INSERTING THE SENSOR

A lead is now applied at the top of the sensor forcing the bottom of the sensor to seat against the far wall of the pipe. The amount of lead is indicated by the three lines and set screw at the top of the sensor. The bottom line indicates a 300 lb. load.

Recommended sensor loads are 300 lbs. or less for low pressure plastic pipes and 450 lbs. for low pressure metal pipes.

For applications other than low pressure the sensor load should be increased. Follow the instructions below after the set screw is between the top and middle lines. Consult factory for the appropriate loading for your application.

Rotate the two captive nuts on the top plate until the proper load is indicated. If using the Insertion Tool, rotate the two captive nuts using only the low pressure metal pipes. DO NOT use the high gears on the insertion tool as this may create too much load too fast and damage the sensor or the pipe.

Tighten the compression seal bolts again.

IMPORTANT: The long retaining rods are matched to each sensor and are required for the removal of the sensor. It is important to safely store the long retaining rods and label them with the meter serial number.

1. Insert the two short retaining rods through the two holes in the top plate opposite the two captive nuts with the long retaining rods.
2. Loosen, but do not remove, the bolts and nuts on the retaining rods fully assembled.
3. Remove the 3/8" or 1/2" nuts from the retaining rods.
4. Slide the sensor out of the compression seal. The retaining rods will also slide out of the compression seal assembly. Carefully set the sensor and attached hardware to the side. At this point the compression seal assembly can be re-installed onto the valve.

IMPORTANT: When inserting the retaining rods, ensure the end has a hole for the locking cotter pin.

3. Ensure the two nuts above and below the compression seal assembly are sufficiently tightened to prevent the thread rod from rotating.

4. Insert the locking cotter pins through small holes in the bottom of the retaining rods, just below the 3/8" or 1/2" nuts.